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Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas
bubbles in a microscopic texture. Recent work has focused on specific cases, such as arrays of pillars
or grooves, with limited theoretical guidance. Here, we consider the experimentally relevant limit
of thin channels and obtain rigorous bounds on the effective slip length for any two-component
(e.g. low-slip and high-slip) texture with given area fractions. Among all anisotropic textures,
parallel stripes attain the largest (or smallest) possible slip in a straight, thin channel for parallel
(or perpendicular) orientation with respect to the mean flow. Tighter bounds for isotropic textures
further constrain the effective slip. These results provide a framework for the rational design of
superhydrophobic surfaces.

PACS numbers: 83.50.Rp, 47.61.-k, 68.08.-p

Introduction.– The design and fabrication of micro-
and nanotextured surfaces have received much attention
in recent years. In case of a hydrophobic texture a mod-
ified surface profile leads to a very large contact angle
and can induce novel properties, which could not be
achieved without roughness [1]. Thus, the remarkable
mobility of liquids on such superhydrophobic surfaces in
the Cassie state, i.e. where the texture is filled with gas,
renders them “self-cleaning” and causes droplets to roll
(rather than slide) under gravity and rebound (rather
than spread) upon impact. Beyond their fundamental
interest, such surfaces may impact microfluidics [2, 3],
by reducing viscous drag in very thin channels and am-
plifying transport phenomena [4] and transverse flows [5].

Reduced wall friction is associated with the breakdown
of the no-slip hypothesis. It has recently become clear
that liquid slippage occurs at smooth hydrophobic sur-
faces and can be described by the boundary condition [6–
8], vs = b ∂v/∂z, where vs is the (tangential) slip velocity
at the wall, ∂v/∂z the local shear rate, and b the slip
length, which can reach tens of nm [9]. A mechanism for
large slippage involves a lubricating gas layer of thickness
δ with viscosity µg much smaller than that of the liquid
µ [10], so that b ≈ δ(µ/µg−1) ≈ 50δ [11]. Slip lengths up
to tens of µm may be then obtained over a gas layer sta-
bilized with a rough wall texture. The composite nature
of the texture, however, requires regions of lower slip (or
no slip) in direct contact with the liquid, so the effective
slip length of the surface b∗ (defined below) is reduced.
For anisotropic textures b∗ depends on the flow direction
and is generally a tensor [12]. Indeed, experimental stud-
ies of flow past superhydrophobic surfaces suggest that
b∗ does not exceed several µm [13] (except for a special
design [14]) and varies with the orientation of the wall
texture relative to flow [15].
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FIG. 1: Sketch of a thin channel, where the gap width h is
small compared with the texture characteristic length L.

The quantitative understanding of liquid slippage past
superhydrophobic surfaces is still challenging. Some ex-
act solutions are known for a flow on alternating (parallel
or transverse) no-slip and perfect slip stripes [16, 17] or
transverse inhomogeneous slip sectors [18]. Simple scal-
ing expressions have been proposed for a geometry of
pillars [8, 19], and numerical approaches have also been
followed [20–22]. Nevertheless, general principles to max-
imize or minimize the effective slip have not yet been
established, even in the simple (but experimentally rel-
evant) lubrication limit, where the implication of slip is
the most pronounced [10].

In this Letter, we propose a systematic approach to
quantify and optimize the effective slip length in a thin
channel. Rather than a precise discussion of the liquid
flow past composite regions, we use the theory of trans-
port in heterogeneous media [23, 24], which provides ex-
act results for an effective permeability over length scales
much larger than the heterogeneity. From this theory,
we derive rigorous bounds on an effective slip length for
arbitrary anisotropic or isotropic textures, given only the
area fraction and local (any) slip lengths of the high-slip
and low-slip regions. These bounds constrain the attain-
able effective slip and provide theoretical guidance for
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texture optimization, since they are attained only by cer-
tain special textures in the theory. In some regimes, the
bounds are close enough to obviate the need for tedious
calculations of flows over particular textures.

Model and analysis.– We consider pressure-driven
flow of a viscous fluid between two textured parallel
plates (“+” and “-”) separated by h, as sketched in Fig.1.
Motivated by superhydrophobic surfaces in the Cassie
state, we assume flat interfaces (as in most previous stud-
ies [16, 20]) and corresponding to a minimum dissipa-
tion [17, 25]) characterized by spatially varying, piecewise
constant, slip lengths b+(x, y) and b−(x, y). Our analysis
is based on the lubrication (or Hele-Shaw) limit of a thin
channel, where the texture varies over a scale L ≫ h; the
flow profile is then locally parabolic in a domain where
slip lengths are constant. To evaluate the effective slip
length, we first integrate this parabolic velocity profile
across the channel to obtain the depth-averaged velocity
U in terms of the pressure gradient ∇p along the plates.
The result is an expression of Darcy’s law,

U = −k(x, y)

µ
∇p, (1)

where we obtain the piecewise constant permeability

k(x, y) =
h2

12

(

1 +
3(β+ + β− + 4β+β−)

1 + β+ + β−

)

(2)

in terms of the normalized slip lengths β+ = b+(x, y)/h
and β− = b−(x, y)/h. As usual in Hele-Shaw flow, we
neglect localized flow perturbations around the jumps in
b+(x, y) and b−(x, y). We consider case (I) of one no-
slip wall (β+ = β(x, y); β− = 0), which is relevant for
various setups, where the alignment of opposite textures
is inconvenient or difficult. Since the permeability (2) is
maximized with two equal surfaces, β+ = β− = β(x, y),
we also consider this case (II) with the goal of minimizing
drag [26]. The permeability then takes the form:

k(x, y) =
h2

12

{

1 + 3β(x, y)/[1 + β(x, y)] case (I)

1 + 6β(x, y) case (II)

(3)
The slip length can also vary with orientation and thus
is generally a second-rank tensor b(x, y), from which a
tensorial permeability k(x, y) can be derived [12].

The slip length b(x, y) (or b(x, y)) varies on the mi-
croscale L ≫ h, but we are interested in properties of the
flow at the macroscale. A natural definition of the effec-
tive slip length is based on a hypothetical uniform chan-
nel with the same effective permeability. First, we aver-
age (1) over the texture (denoted by 〈.〉) at a mesoscale
that is smaller than the macroscale, but much larger than
L, to obtain

〈U〉 = − 1

µ
〈k(x, y)∇p〉 = −k∗

µ
· 〈∇p〉

(a) (b) (c)

FIG. 2: Special textures arising in the theory: (a) stripes,
which attain the Wiener bounds of maximal and minimal ef-
fective slip, if oriented parallel or perpendicular to the applied
pressure gradient, respectively; (b) the Hashin-Shtrikman
fractal pattern of nested circles, which attains the maxi-
mal/minimal slip among all isotropic textures (patched should
fill up the whole space, but their number is limited here for
clarity); and (c) the Schulgasser texture, whose effective slip
follows from the phase-interchange theorem.

where in the last step we introduce the effective perme-
ability k∗, which is generally a tensor, even if k(x, y) is
locally isotropic. Only with an isotropic structure at the
mesoscale does it become a scalar k∗. This definition
is subject to the boundary condition of a uniform pres-
sure gradient ∇P applied at the macroscale, which must
equal the average pressure gradient, 〈∇p〉 = ∇P , since
the pressure is harmonic [23].

By analogy with (3), we define the effective slip length
in terms of the effective permeability:

k∗
j =

h2

12

{

1 + 3β∗
j /[1 + β∗

j ] case (I)

1 + 6β∗
j case (II)

(4)

where the principal (eigen) directions j = 1, 2 of k∗ corre-
spond with those of β∗ = b∗/h, where b∗ is the effective
slip length tensor [12].

We then assume b(x, y) switches between two values,
b1 and b2, associated with permeabilities k1, k2 from (3),
for regions (or “phases”) of liquid-solid and liquid-gas
interfaces, respectively. Let φ1 and φ2 be the area frac-
tions of the two phases with φ1 + φ2 = 1. We make no
further assumptions in deriving bounds on the effective
slip length β∗ in a principal direction (without transverse
flow), aside from distinguishing between anisotopic and
isotropic textures.

Anisotropic textures.– For any two-component tex-
ture, if only the fraction of each component is known,
the so-called Wiener bounds apply [24]: k⊥ ≤ k∗ ≤ k‖,
where k∗ is an eigenvalue of k∗. The lower bound
k⊥ = (φ1/k1 + φ2/k2)

−1
is attained by parallel stripes

perpendicular to the pressure gradient and the upper
bound k‖ = φ1k1 + φ2k2 by stripes parallel the pressure
gradient (Fig 2(a)), which correspond to familiar limits
of resistors in series or in parallel, respectively.

Using (3) and (4), the corresponding bounds for the
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effective slip length are

〈β〉 + 4β1β2

1 + 4〈β̃〉
≤ β∗ ≤ 〈β〉 + β1β2

1 + 〈β̃〉
case (I) (5a)

〈β〉 + 6β1β2

1 + 6〈β̃〉
≤ β∗ ≤ 〈β〉 case (II) (5b)

where

〈β〉 = φ1β1 + φ2β2 and 〈β̃〉 = φ2β1 + φ1β2 (6)

are the average slip length and average transposed slip
length, respectively. Using parameters for typical super-
hydrophobic surfaces, these bounds are plotted versus
the liquid-gas area fraction φ2 in Fig. 3(a) and versus
the liquid-gas slip length β2 in Fig. 3(b). In case (I) the
bounds are fairly close (especially when β2 is large), so
the theory provides a good sense of the possible effective
slip of any texture, based only on the area fractions and
local slip lengths. In case (II) the difference between the
upper and lower bounds is larger and grows quickly with
β2.

Isotropic textures.– Consider now any isotropic
structure, without a preferred direction (k∗ = k∗I). If
the only knowledge about the two-phase texture is φ1, φ2,
then the Hashin-Shtrikman (HS) bounds apply for the
effective permeability [24], kL

HS ≤ k∗ ≤ kU
HS, where (as-

suming β1 ≤ β2 without loss of generality):

kL
HS = 〈k〉 − φ1φ2[k]2

〈k̃〉 + k1

, kU
HS = 〈k〉 − φ1φ2[k]2

〈k̃〉 + k2

with [k] = k2 − k1 and using the same notation as in
(6). Each bound can be attained by the special HS frac-
tal pattern [24] sketched in Fig 2(b). For one bound,
space is filled by disks of all sizes, each containing a cir-
cular core of one component and a thick ring of the other
(with proportions set by the concentration), and switch-
ing the components gives the other bound. Fractal geom-
etry is not necessary, however, since periodic honeycomb-
like structures can also attain the bounds [27].

Using (3) and (4), the corresponding bounds for the
effective slip length are obtained in a form similar to (5):

〈β〉 + f(β1)β1β2

1 + f(β1)〈β̃〉
≤ β∗ ≤ 〈β〉 + f(β2)β1β2

1 + f(β2)〈β̃〉
(7)

where f(β) =

{

(5 + 3β)/(2 + 5β) case (I)

3/(1 + 3β) case (II)
. (8)

The HS bounds (7) are plotted in Fig. 3 in the same way
as the Wiener bounds (5) and behave similarly, aside
from being closer and confined between them. However,
it turns out that isotropy does not dramatically reduce
(enhance) the maximum (minimum) effective slip in a
thin channel, especially in the configuration with two su-
perhydrophobic surfaces, case (II).
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FIG. 3: (a) Bounds on the (normalized) superhydrophobic
slip length β∗/β2 versus the liquid-gas area fraction φ2, as-
suming no slip β1 = 0 and high-slip β2 = 5 on the liquid-solid
and liquid-gas interfaces, respectively. Bottom: zoom of top
figure. Gray and black lines and symbols correspond to cases
(I) and (II), that is one or two superhydrophobic surfaces, re-
spectively. The solid lines represent the Wiener bounds and
the dashed lines represent the HS bounds. The values of β∗

for the chessboard or the isotropic Schulgasser structure are
also shown as circles. (b) The same bounds plotted versus the
slip length β2 for φ2 = 0.9.

Finally, we use phase interchange results [24] to obtain
the effective slip length without any calculations, for a
special class of isotropic textures. For one that is invari-
ant by a π/2 rotation followed by a phase interchange, a
classical result follows: k∗ =

√
k1k2. Examples include

the chessboard and the Schulgasser texture, sketched in
Fig. 2(c). The effective β∗ obtained from (4) is shown
in Fig. 3(a). For case (I) it is close to the the HS upper
bound, although for case (II) it is not.

Design strategies– We close by proposing some
guidelines for the design of thin superhydrophobic mi-
crochannels, which maximize effective slippage, e.g. for
lab-on-a-chip applications. We assume a principal direc-
tion of the texture is aligned with the side walls, since this
is typically the fastest orientation. (Tilted textures also
complicate the analysis, since the constraint of no trans-
verse flow, 〈U〉y = 0, induces a transverse pressure gra-
dient, 〈∇p〉y = −(k∗

yx/k∗
yy)〈∇p〉x, which in turn affects
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the mean forward flow, 〈U〉x = −(1/µ) det(k∗)/k∗
yy [12].)

For simplicity, we also restrict now to the case β1 = 0 of
no-slip support structures.

It has been predicted for thick (L ≪ h) cylindrical [16]
and planar channels [20] that the longitudinal stripe con-
figuration has larger effective slip than the transverse one.
For a thin channel (L ≫ h), we can now draw the more
general conclusion that longitudinal (transverse) stripes
provide the largest (smallest) possible slip that can be
achieved by any texture. Interestingly, this in contrast
to a prediction for thick channels, where an array of pil-
lars in the limit φ2 → 1 has larger slip than longitudinal
stripes [19].

We have shown that the key parameter determining
effective slip is the area fraction of solid, φ1, in contact
with the liquid. If this is very small (or φ2 → 1), for
all textures the effective slip tends to a maximum, β∗ →
β2. In this limit, the microchannel produces a kind of
superfluidity, with plug-like flow. However, even a very
small φ1 is enough to reduce the effective slip significantly
since in this limit (except an upper limit for case (II),
where φ2−β∗/β2 = 0) we have for case (I) the asymptotic
scaling φ2 − β∗/β2 ∝ φ1. It is interesting that in case of
perfect slip over the gas areas, β∗ scales as ∝ φ2/φ1,
which is similar to an earlier result for a thick cylinder
with transverse stripes [16]. For thin channels, we see
now that this result is the very general upper bound,
valid for any texture (and likely any channel geometry)
with perfect slip patterns, representing “obstacles” to the
flow. We conclude that in many situations, maximizing
β2 is not nearly as important as optimizing the texture
to achieve large effective slip.

Finally, we have demonstrated that the largest possi-
ble β∗ for any slip lengths or area fractions is equal to
the area-averaged slip length 〈β〉, attained by longitudi-
nal stripes. Optimal isotropic textures (e.g. honeycomb)
exhibit smaller β∗, but may be preferable to enhance
the stability of the gas-liquid interfaces. For all textures
the effective slip nearly coincides with the average, if β2

is small (or β2 − β1 ≪ 1). Although this limit is less
important for pressure-driven microfluidics, it may have
relevance for amplifying transport phenomena [4].

In summary, we have derived rigorous bounds on the
effective slip of two-component textures in thin channels,
which can guide the design of superhydrophobic surfaces
for micro/nanofluidics, and some general principles may
hold for thick channels as well.

MZB and OIV gratefully acknowledge the hospitality
of the ESPCI through Paris-Sciences and Joliot Chairs.

[1] D. Quere, Rep. Prog. Phys. 68, 2495 (2005).
[2] H. A. Stone, A. D. Stroock, and A. Ajdari, Annual Re-

view of Fluid Mechanics 36, 381 (2004).

[3] T. M. Squires and S. R. Quake, Reviews of Modern
Physics 77, 977 (2005).

[4] A. Ajdari and L. Bocquet, Phys. Rev. Lett. 96, 186102
(2006).

[5] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezić,
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