

Кристаллизация сверхпроводящих РЗЭ-бариевых купратов

Е.А.Гудилин

Химический факультет Факультет Наук о Материалах **МГУ им. М.В.Ломоносова**

2011

Кристаллическая структура

РЗЭ-бариевые купраты:

(R,R₁)Ba₂Cu₃O_z (R=Y, R₁=Nd, Sm, Eu, Gd, Dy, Ho, Yb)

 $\begin{array}{l} R(Ba_{1-x/2}R_{x/2})_2Cu_3O_z\\ (R=Nd, Sm, Eu, Pr). \end{array}$

Кислород-дефицитные перовскитоподобные фазы с широкими областями катионной и анионной гомогенности и структурночувствительными свойствами

Основные свойства СП

Temperature Kelvin Идеальный проводник ниже Тс

Идеальные диамагнетики (эффект Мейснера-Оксенфельда)

Эффект Джозефсона (туннелирование через диэлектрическую прослойку): сильная зависимость тока через джозефсоновский контакт от внешнего магнитного поля

Открытие ВТСП

ΒΤΟΠ

ВТСП – высокотемпературные сверхпроводники

Критерий чистоты полупроводникового кремния – число «девяток» Чистота оптических материалов – километры оптоволокна без рассеивающих центров

ВТСП – <u>кристаллы</u> NdBa₂Cu₃O₇ 0.1 ат.% ZnO – падение T_C на 10К Иерархия структуры: 1 ат.% CaO - падение Т_С на 10К влияние нано-, мезо-10 ат% Nd_2O_3 - падение T_C на 50К и микроуровня организации 1% включений – плохое качество ВТСП – <u>керамика</u> NdBa₂Cu₃O₇ 0.01 ат.% ZnO – повышение J_c (intra) на 50% 0.1 ат.% СаО - повышение J_c (inter) на 30% 1 ат% Nd_2O_3 - повышение J_c (intra) на 100% 40% включений – оптимум ВТСП – <u>пленки</u> NdBa₂Cu₃O₂ 100 нм диэлектрическая прослойка – падение J_с в 10-100 раз 10^{0} разориентации в плоскости – падение J_{c} в 100-10000 раз Падение содержания кислорода на 3-4 масс.% - отсутствие сверхпроводимости Проблема деградации (СО₂, H₂O) Высочайшая агрессивность купратных расплавов

Moscow State University

Физическая фазовая диаграмма

Параметры Гинзбурга-Ландау для ВТСП ҮВа2Си3О7

в сравнении со слоистым HTCП NbSe $_2$

Параметр	YBa ₂ Cu ₃ O ₇	NbSe ₂
ξ (ab), нм	1.2 (2)	7.7
ξ (с), нм	0.20 (4)	2.3
λ (ab), нм	89 (20)	69
λ (с), нм	550 (200)	230
H _{c1} (ab), мТ	90 (20)	
H _{c1} (с), мТ	21 (6)	
$-(dH_{c2} (ab)/dT)_{Tc}, T/K$	14 (5)	
-(dH _{c1} (ab)/dT) _{Tc} , мТ/К	0.20 (6)	5

РЗЭ-бариевые купраты имеют высокие СП характеристики, обеспечивающие реальные перспективы их практического применения.

Оксидные функциональные материалы:

- -хрупкость
- -кристаллографическая анизотропия
- -сложность состава
- -композиты
- -заданные геометрические размеры
 ★ управление ориентацией кристалитов во время роста

Содержание кислорода

концентрации – максимальная Т.

Пиннинг

границы...

Центры пиннинга

Центры	РЗЭ	Примечания	
пиннинга/дефекты			
	Y, Ho,	пиннинг на границах раздела включений со СП	
211 или 422 фазы	Er,/Nd	матрицей и на образовавшихся приграничных дефектах	
«химически»		введение металлов платиновой подгруппы, диоксида	
диспергированная 211	Y	церия, легирование соединениями гольмия	
фаза			
цирконаты, титанаты,		введение высокодисперсных несверхпроводящих	
станнаты,	Y	включений, химически совместимых со	
металлический никель		сверхпроводящей матрицей	
		комбинированный эффект от введения	
		высокодисперсных несверхпроводящих включений,	
оксиды урана	Y	химически совместимых со сверхпроводящей матрицей	
		и «внутренного» радиационного пост-облучения	
		матрицы при распаде нестабильных изотопов урана,	
		образовавшихся после облучения нейтронами	
		введенных стабильных изотопов	
облучение нейтронами		образование кластеров дефектов - треков при	
и ионная	Y	торможении нейтронов или ионов в СП-матрице,	
бомбардировка		аморфизация матрицы и локальное изменение	
		содержания кислорода	

L					
Ma	малоугловые границы	Y	участие в стабилизации вихревой решетки малоугловых		
Ť.	зерен и микротрещины		границ внутри квазимонокристаллических доменов		
Mœ			участие в стабилизации вихревой решетки малоугловых		
	малоугловые	Y,, Nd	границ - двойников, представляющих собой		
	границы/двойники		пространственный дефект определенной толщины с		
			пониженным содержанием кислорода		
	кластеры кислородных		пиннингование и пик-эффект благодаря неоднородному		
	вакансий	Y,, Nd	распределению кислорода в СП-матрице и различным		
			СП-характеристикам таких областей		
			влияние внутренних микронапряжений и		
	дислокационная сетка	Y	пространственных нарушений структуры вблизи		
-			дислокаций		
			флуктуации катионного состава твердого раствора		
			$R_{1+x}Ba_{2-x}Cu_{3}O_{z}$ и связанного с ним содержания		
	наноразмерные	La, Nd,	кислорода и локальных искажений кристаллической		
	флуктуации	Sm, Eu,	решетки, а также СП-характеристик, из-за		
	катионного состава	Gd	неоднородного перераспределения катионов по		
			подрешеткам Ва ²⁺ и R ³⁺ (возможно, спинодальный		
			распад или любое иное гомофазное расслоение		
			пересыщенного твердого раствора)		
		Y, Nd	Колебания содержания меди вблизи границы раздела		
	(тонкие		кристаллического слоя и подложки (жидкофазная		
структуры срастания пленки и		пленки и	эпитаксия и пр.) из-за образования структур срастания		
кристал-		кристал-	гомологов 123 фазы (247 и 124 фазы), локальные		
		лические	микронапряжения, возникающие пространственные		
		слои)	дефекты		

Перитектический распад

13

Ň

~30 различных способов получения из расплава

Анализ фазовых соотношений

Phase relations in the Nd-Ba-Cu-O system in air 1/4 "202" -----0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 mol. ratio Div.IV, SRL 1/6 123 122 0.0 ISTEC 1080 422 +201 +L 422 +L 1073 Nd12365 +L 1070 +422 201+L **F**⁰C 1060 "035" 1060 1050 Nd123ss 1045 1040 +L +201 1030 1030 ο μ¹⁰²⁰ 422+L Nd123ss 201 12271 +L 1020 +001 1010 213 1000 100 3.2at% 995 Nd123ss+201+001 **990** 1086 11271 970 980 12³⁺⁴²² 970 900 123 N#12385+ 201+L NET12385+ 422+L 830 1027 CUO 100 ر. ۲°0 at.% Nd 1 arb. units 207 g27 123+011+ Nd concentration in liquid, at% Cu:Ba ratio in liquid x in the Nd123ss solid solution 123s 001 20 0.88 1.00 0.96 0.86 0.57 0.67 0.70 10 123 827 0.00 0.25 "035" CUO 1000 1080 1020 1060 1040 Temperature, °C

Купратные расплавы

-замедленная кинетика снятия пересыщения -контроль состава твердой фазы

Метод Чохральского

Структура _{R1+x}Ba_{2-x}Cu₃O_z

Моделирование, PCA, CKP, TCПП, $Ba_{Nd} \sim 26.8 \text{ eV},$ антистр. ~1.93 eV, Nd → Ba "компенсирует" Ba → Nd

Крупнокристаллическая керамика

20

<u>Кристалл:</u> состав+бездефектность (*T_c*) <u>Керамика:</u> форма+дефекты (*J_c*, *J_c*(*B*))

-Сверхпроводник 2 рода (пиннинг), — -Длина когерентности ~ 0.2 нм (слабые связи) -Анизотропия (ориентация)

 ✓ Тип и концентрации дефектов в матрице
 ВТСП (несв. фазы, дислокации, микротрещины, нанофлуктуации состава)

✓ «Чистые» межзеренные границы

✓ Взаимная ориентация зерен (двуосное текстурирование)

<u>Проблемы:</u> L+S, L+SS, L+O₂

I.Стадия подготовки исходных веществ (1.учет эффектов предыстории исходных веществ и способа организации макроструктуры образца перед стадией плавления), II.Стадия нагрева (2.кислородный обмен с газовой атмосферой), III.Стадия "частичного" плавления (3.увеличение размера частиц фазы Y2BaCuO5 в расплаве), IV.Стадия кристаллизации (4.опережающая кристаллизация бинарных несверхпроводящих купратов, 5.необходимость создания высокотоковой упорядоченной структуры, 6.удаление диэлектрических прослоек с границ кристаллитов при пост-кристаллизационном отжиге, V.Стадия окисления (7.микрорастрескивание в результате "тетра-орто-"перехода, 8.диффузия кислорода внутрь образца, 9.упорядочение кислородной подрешетки, 10.предотвращение деградации керамики).

Lnep - высокотемпературный расплав, обогащенный оксидами бария и меди (I), Lэвт - эвтектические жидкости.

Перитектическая кристаллизация

Модель	Морфология частиц 211 фазы	Предполагаемая схема	Результат
Гетерогенное зародышеобра- зование ^{6,198}	Любая	L (211)	
Растворение в расплаве и гомогенное зародыше- образование ^{6,8}	Изотропная (сферы)	L 211 Y 3+	
Краевые эффекты, огибание частиц 211 фазы фронтом кристаллиза- ции ²¹¹	Высокодисперсные частицы	$123 L \\ 121 + 21$	

å .				
	Образование "зазоров" и вытеснение расплава на границы зерен при захвате частиц 211 фазы ¹⁹¹	Крупные частицы	123(211) L	L 123 211 211 211 211
	Захват или выталкивание частиц 211 фазы фронтом кристаллиза- ции ⁸	Механизм определяется размером частиц и поверхностной энергией взаимодействия, а также скоростью кристаллизации	Сима оттажималия (211 фаза) Сама Бяко- сама Бяко- сама Бяко- сама Бяко- текучесть можеримостного притажелия	$\begin{array}{c c} MAT FMILA FACILIAB \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
	Диспергирован ие частиц 211 фазы движущимся фронтом кристаллиза- ции ^{216,217}	Анизотропные частицы (иглы)		123 211

Размеры частиц вторичных фаз – важный фактор эволюции «расплавных технологий» получения ВТСП-материалов

Moccow Store

Материалы

Объемные ВТСП

Промышленный ОПДТ

Abbildung 1: MCP-BSCCO2212 bifilare Spirale (Hersteller: Nexans Superconductors)

Abbildung 2: Mäander aus polykristallinem YBCO Massivmaterial (Hersteller: Adelwitz Technologiezentrum)

Соединение составных частей

Критический ток через монолит, полученный содиненением отдельных блоков, > 12 000 A/см² и близок к значениям Jс для отдельных блоков.

J.G. Noudem, E.S. Reddy, E.A. Goodilin, M. Noe, G.J. Schmitz, Physica C 372–376 (2002) 1187–1190

Y.Yamada, T.Suga, H.Kurosaki, ... I.Hirabayashi, T.Watanabe, Physica C 372–376 (2002) 828–830

Пористая керамика

предельно

тока:

-τ**→**0

~500°C,

 $-\Omega_{j < lim} = 0$

допустимого

Пенополиуретан (пре-форма)

Y₂BaCuO₅ («зеленая фаза»), 3-5 % ПВС

E.S.Reddy, G.J.Schmitz, Supercond. Sci.Technol., 2002

37

Патент (ACCESS e.V.)

Микроструктура

До 40 масс.% «фазы 211»

Текстурирование

a

-ВЗАИМНАЯ ОРИЕНТАЦИЯ АНСАМБЛЯ КРИСТАЛЛИТОВ В ПОЛИКРИСТАЛЛИЧЕСКОМ ФУНКЦИОНАЛЬНОМ МАТЕРИАЛЕ (максимум интегрированных свойств, баланс внутрикристаллитных свойств и межкристаллитных границ)

 α
 С

 Критично: двуосное

 текстурирование («сильные

 связи» для повышения Jc(В))

 Разориентаци в 10⁰ – падение

 тока на 1-2 порядка

8

-создание упорядоченных структур из отдельных элементов (нелинейные системы)

Типы границ

<u>és</u> . 🗍 . 🔌				
Моделн)	Описание	Преимущества и недостатки	
Weak lini (слабые св	ks язи)	Падение критического тока на границах разориентированных зерен керамики, или при наличии тонких диэлектрических прослоек, сквозь которые возможно «туннелирование» криттока	Описывается физической моделью «сверхпроводящего стекла», применима теория полевой зависимости падения криттока во внешнем магнитном поле для джосефсоновских контактов, хорошо применима для мелкокристаллических спеченных керамик	
Tilt/twist bou (поворотни «перекручен границы	indary ые и іные» і)	Классификация высокоугловых границ на параллельные оси с (tilt boundary) и перпендикулярные оси с (twist boundary)	Основанна на значительной кристаллографической анизотропии 123 фазы и анизотропии ее физических свойств	
"Brick-wa (модели "кирпичн стены"	ull" ой)	Для формирования высокого транспортного тока важное значение имеют поворотные границы, образующие максимальную поверхность контакта между кристаллитами	Структурный критерий - соразмерность длины когерентности с расстоянием между сверхпроводящими плоскостями, поэтому модель объясняет различия в значении криттоков для аксиальнотекстурированных ВТСП (особенно основе висмутовых материалов), однако не учитывает прохождение тока через высокоугловые границы вдоль плоскости <i>ab</i>	
"Railway sw (моделн "железнодор х стрелон	vitch" ожны с")	Протекание тока через межкристаллитные границы по плоскостям, вместе с током, проходящим через поворотные границы, связи формируют трехмерную сетку	Наиболее применима для висмут-содержащих сильнотекстурированных материалов	
Модель пло "сильно связанны участко HABLE - h angle-but-l energy bour	щади x" з, ligh- ow- idary	Величина криттока зависит от площади "сильно связанных" участков межкристаллитной границы, вероятность "сильной связи" между двумя взаимно ориентированными кристаллитами значительно выше, чем в случае их взаимной разориентации	Возможен рассчет суммарного протекающего криттока, основанный на учете вклада различных ансамблей кристаллитов с различной ориентацией зерен и энергии межкристаллитных границ, который коррелирует с экспериментальной визуализацией распределения криттока в различных ВТСП с помощью магнитооптических измерений	

R	Конф.	Степ. окисл.	r(R ³⁺), A* (KY=8)
La	$[Xe]5d^{1}6s^{2}$	+3	1.30
Pr	$[Xe]4f^36s^2$	+3 (+4)	1.27
Nd	$[Xe]4f^46s^2$	+3	1.25
Sm	$[Xe]4f^6s^2$	+3 (+2)	1.22
Eu	$[Xe]4f^{7}6s^{2}$	+3 (+2)	1.21
Gd	$[Xe]4f^{7}5d^{1}6s^{2}$	+3	1.19
Dy	$[Xe]4f^{10}6s^2$	+3	1,17
Но	$[Xe]4f^{11}6s^2$	+3	1.16
Yb	$[Xe]4f^{14}6s^2$	+3 (+2)	1.13
Y	$[Kr]4d^{1}5s^{2}$	+3	1.16

Концентрационный градиент

40

«Селекция» («выживание») наиболее быстрых направлений в ансамбле растущих кристаллитов предопределяет направление развития всего ансамбля (текстура)

Идея: G.J.Schmitz, ACCESS e.V.

Графотекстурирование: -«геометрическое поле» -отсутствие больших градиентов концентрации и температуры -стационарность условий

Получение покрытий

43 Графотекстурирование Г/о фаза трехфазная граница Стенка перемещение

для минимизации свободной поверхности

расплава

T₃

вращение для минимизации свободной поверхности Стенка расплава

кристаялизация

Основные факторы:

размер, форма крист., з/ о, мениск, «кучность» ансамбля кристаллитов, Отенка кристаллизационное давление, подвижность (ж.ф.),...

Канавка Подложка с рельефом

Любой участок ленты ориентирует ВТСП-одинаково -> можно кристаллизовать ленты ЛЮБОЙ длины и образцы сложной формы в однородном температурном поле за один цикл

Роль искусственного рельефа

перпендикулярные

стенки

В ячейке, разориентация

44

У Рост кристаллов около элементов рельефа -Контакт со стенкой -Симметрия рельефа -Один кристалл на ячейку

Центры кристаллизации

Микроструктура

EHT = 15.00 kV Signal A = SE2

WD = 10 mm

2µm

 Signal A = SE2
 Date :22 May 2001

 Signal B = AUX 1
 MAG = 6.78 K X

1 - ВаСиО₂, 2 - трещины, 3 – послойный рост, 4 - мениск, "Y123" – кристаллиты в широкой канавке

⁴⁸ Ориентация кристаллитов

~100 экспериментов(15 типов рельефа): до 90% ориентации

«Кристаллкристалл»

Параллельные внутренние стенки канавок 75% из 220 кристаллов полностью ориентированы на площади 8-9 мм² Неориентированный кристалл на поверхности

 ✓ Соответствующий по симметрии рельеф (ось второго порядка, пластинки),
 ✓ Соответствие размеров кристаллов и
 элементов рельефа (около 100 мкм),
 ✓ Геометрические ограничения роста (две параллельные стенки),
 ✓ Контроль разования (община)

 ✓ Контроль зародышеобразования (вблизи элеметов рельефа)

«Умные» затравки

Пропитка расплавом структуры, полученной на поверхности серебра методом

Т↓ - образование центров кристаллизации и рост «затравок» в **требуемой** ориентации

Т↓↓ - развитие фронта кристаллизации в основном поле в той же ориентации

"Самотекстурирование"

50

Литература

- . *Ю.Д.Третьяков, Е.А.Гудилин.* Химические принципы получения металлоксидных сверхпроводников, Успехи Химии, 2000, т.69, н.1, с.3-40.
- 2. А.М.Абакумов, Е.В.Антипов, Л.М.Ковба, Е.М.Копнин, С.Н.Путилин, Р.В.Шпанченко. Успехи Химии, 64, 769 (1995)
- 3. *М.Г.Мнеян*, Сверхпроводники в современном мире, М.Просвещение, 1991, 69 с.
- 4. Высокотемпературные сверхпроводники. (Под ред. Д.Нелсона, М.Уиттинхема, Т.Джорджа), Мир, Москва, 1988
- 5. ЖВХО им.Д.И. Менделеева, 34, 436-536 (1989)
- 6. Физические свойства высокотемпературных сверхпроводников. (Под ред. Д.М.Гинзберга). Мир, Москва, 1990
- 7. Высокотемпературная сверхпроводимость. Фундаментальные и прикладные исследования. Вып. 1. (Под ред. А.А. Киселева), Машиностроение, Ленинград, 1990
- 8. Дж.Блейкмор. Физика твердого тела. Мир, Москва, 1988, С.325
- 9. И.Е.Аршакян, Н.Н.Олейников, Ю.Д.Третьяков. *Неорган. материалы.* 30, 824 (1994)