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Movies S1 and  S2 



S1. Supporting Movie Legends 

Movie S1. This movie shows diffusion and coalescence of nanocrystals.  The frame rate is 

~3.85/sec.  Two movies were taken back-to-back with a dead time of 5 seconds between them;  

they were combined for Movie S1.  The dead time is seen as a gap data in Fig. 3A. 

Movie S2. This movie shows diffusion, oriented attachment, and faceting of nanocrystals.  The 

frame rate is ~ 3.85/sec. 

 

S2. Methods 

Preparation of GLC sample.  Growth dynamics of platinum nanocrystals in a graphene liquid 

cell was observed in-situ using a TEAM I. A growth solution of Pt(acetylacetonate)2 (10 mg/mL) 

in a mixture of o-dichlorobenzene and oleylamine (9:1 in volume ratio) was used. The success 

rate in producing viable GLCs is >90%. 

Pt growth in GLC.  The growth of platinum nanocrystals was initiated by electron beam 

irradiation.  Electron beam intensity was optimized onto local spots for the initial ~ 5 seconds of 

Movie S1 and S2 to capture the initial stage of nanocrystal growth.  Liquid films for Movie S1 

and S2 were thin enough to capture these initial stages. The electron beam intensity was 

maintained same throughout observation time and provided optimal contrast for nanocrystal 

motions. With thicker liquid films, contrast is very poor; however, liquid thickness can also be 

thinned by very strong electron beam irradiation (such conditions did not apply to the data shown 

here). Our TEM observations reveals that graphene secure liquid within pockets throughout the 

duration of the recording, usually ten to twenty minutes. ” 

Microscopy. The low magnification TEM imaging was performed in a JEM-2010 LaB6 

instrument (JEOL Ltd.) at 100 kV.  



High-resolution TEM images were acquired with the TEAM 1 operated at 80kV at the National 

Center for Electron Microscopy.  This electron microscope has a high-brightness gun (X-FEG) 

and probe as well as image and chromatic aberration correctors.  The image corrector (Cs) was 

fine tuned to obtain a third-order spherical aberration of −10μm, which in consideration of the 

positive fifth-order aberration (C5) of 2.5 mm yielded optimal phase contrast with slight positive 

defocus.  The theoretical information limit of 0.05 nm can thus be achieved at 80 kV.  The 

resulting electron dose is approximately 4×105 eെ/sec·nm2.  We set 0.03 seconds of exposure 

time, 0.23 seconds of read out time, and therefore 0.26 seconds of entire frame time to acquire 

time-serial images.  More details of the microscope configuration can be found elsewhere [32]. 

AFM images were taken on a MFP-3D scanning probe microscope (Asylum Research 

instruments).  AFM imaging was performed on suspended GLC samples on Quantifoil TEM 

grids in non-contact mode using a V-shaped ‘NSC35’ probe C (phosphorus-doped Si with 

frequency fc = 150 kHz, spring constants k = 4.5 N m-1, and nominal tip radius 10 nm).  All 

images were collected under ambient conditions at 23 °C with a scanning rate of 2.5-10 um/s. 

SEM images were performed using FEI XL3000 at 5 kV. 

Spectroscopy. The Raman measurements were performed using Renishaw inVia Raman 

microscope with 514 nm Ar ion laser. 

 

S3. Text 

Diffusivity of Pt nanocrystal. Two-dimensionally projected positions for a single nanocrystal 

trajectory are tracked in Movie S1 as it grows from 0.28 to 0.55 nm in radius by monomer 

attachment.  As it grows, the particle diffusion slows as expected for Brownian motion (in the 

SiN cell the diffusivity does not scale this way due to substrate interactions).  The trajectory is 



divided into three equal parts based on time.  As the nanocrystal grows with time, the mean 

square displacement (MSD) <x2> decreases (Fig. S8A).  Representative TEM images of the 

nanocrystal at each time frame are displayed in Fig. S8B with color gradient mapped images for 

clarification.  The two-dimensional diffusivity D is extracted from the slope of the MSD as a 

function of time; the corresponding nanocrystal size is averaged for each time regime.  Figure 

S8C shows that the measured D of a nanocrystal decreases monotonically as the nanocrystal 

steadily grows.  One similarity with previous tracking studies in the silicon nitride window cells 

is that the nanocrystal diffusivities in the confined liquid are found to be smaller than those 

expected from the bulk liquid viscosity (26).  

Coalescence of Pt nanocrystals. We observed twenty coalescence events between NCs with 

diameters greater than 1 nm in Movie S2.  We assume that coalescence events of NCs with 

smaller size or parallel to the electron beam cannot be distinguished or detected, respectively, and 

thus are not considered.  One important factor to consider prior to discussing coalescence 

dynamics is NCs rotational degree of freedom. Figure S9 exhibits different lattice planes of a 

freely rotating NC at different times of observation.  For this specific NC, lattice planes were 

observed eight times while the zone axis aligned with the beam over the course of the video; 

otherwise no fringes were observed off the crystal zone axes. Most coalescence we distinguished 

by lattice planes from Movie S2 occur along the along {111} planes of either one or both NCs, as 

represented in Fig. 2, Fig. S10, and Fig. S11.  Only two coalescence events surveyed merged on 

different planes of  the contacting NCs: {110} plane for one and off-zone axis for the other (Fig. 

S12).  

The ratios of two NC diameters in Figs. 2B and 2C before coalescence are 0.75 and 0.71, 

respectively, which are similar with diameter ratios of two domains with twin boundaries after 

coalescence, 0.74 and 0.68 in Figs. 2B and 2C, respectively. Diameter is calculated using 

D=2(A/π)0.5, where A is the projected 2D area of the NC in the video images.  This consistency of 



diameter ratio before and after coalescence is shown in all of NCs with twin boundaries in Movie 

S2 (Fig. S11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S3. Supporting Figures and Legends 

 

Fig. S1. Preparation of a graphene liquid cell.  (A) Illustration of the fabrication processes of the 

graphene liquid cell.  (B) SEM image of a graphene liquid cell. The inset is a TEM image of a 

nine-layered graphene on edge; that the distance between adjacent graphene layers is 0.37 nm. 



 

 

Fig. S2. AFM image and height profile of a GLC supported on a holey a-C grid.  Encapsulated Pt 

growth solution appears white in the image and yields a spike in the height profile.  

 

 

 

Fig. S3. Raman spectra of graphene deposited on TEM grid and graphene liquid cell.  

 



 

 

Fig. S4. Growth trajectories of individual Pt nanocrystal in several pathways: gradual growth by 

monomer addition, green; a single coalescence, red; and multiple coalescence, blue. Arrows 

indicate coalescence events. 

 

 

 

Fig. S5. Bright-field TEM image of Pt nanocrystals synthesized in a graphene liquid cell by the 

exposure of the growth solution to the electron beam for about 5 min and with corresponding 

particle diameter (D) histogram.  



 

Fig. S6. High-resolution TEM images and FFT patterns of Pt nanocrystals (A) along the [011] 

zone axis (Z.A.) showing {100} and {111} facets and (B) along the [001] direction showing 

{100} facets. 

 

 

Fig. S7. Stil snapshots of two nanocrystals showing correlated motion before coalescence. 

 



 

Fig. S8. Tracking of nanocrystal position and measured diffusivity with average size from 0.28 

nm to 0.55 nm in radius during growth.  (A) Positions of a nanocrystal in consecutive time 

regimes of 20 seconds each during growth: red, blue, and green colors indicate the earliest to final 

time regime, respectively.  (B) Representative TEM images from Movie S1 of the tracked 

nanocrystal in the different time regimes.  Colors of the circles match the time regimes in (A).  

The panels on the right are false-color representations of the TEM contrast data.  Scale bars 

represent 5 nm.  (C) Diffusivity D as a function of average nanocrystal radius (r) over the 20 

seconds of each regime.  

 



 

Fig. S9. From Movie S2, still snapshots and fast Fourier transformed (FFT) patterns showing free 

rotation of a nanocrystal in GLC. The nanocrystal is on [011] zone axis at 49.14 sec, rotates off 

zone axis at 57.72 sec, and has  zone axis at 71.76 sec. 

 

 

 

 



 

Fig. S10. From Movie S2, still snapshots showing coalescence of Pt nanocrystals on or near [011] 

zone axis. Coalescence evens happen at {111} planes in one of two nanocrystals at 22.62 and 

33.02 sec. Incoming small nanocrystals indicated by arrows do not have any zone axes. 

 

 

Fig. S11. From Movie S2, still snapshots showing the twin boundary in a merged nanocrystal 

after coalescence of nanocrystals on or near [011] zone axis. At 28.86 sec, the ratio of two 

nanocrystal diameters before coalescence is 0.88, which is similar with 0.86 of diameter ratio of 

two domains with twin boundary (dotted line) at 32.24 sec after coalescence. 



 

Fig. S12. From Movie S2, still snapshots showing coalescence of Pt nanocrystals on or near [001] 

zone axis. Coalescence evens happen at {110} planes in one of two nanocrystals at 38.48 and 

41.08 sec. Incoming small nanocrystals indicated by arrows do not have any zone axes. 
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