Moscow University Seminar

February 14, 2013

Atomic Structures and Chemistry of Materials Interface

Yuichi Ikuhara

Y.Sato, T.Tohei, T.Mizoguchi, N. Shibata, T.Yamamoto, ZC.Wang, T.Saito, S.Tsukimoto, S.D.Findlay (Monash Univ.), T.Saito, R.Huang, T. Hirayama

Institute of Engineering Innovation, The University of Tokyo Nanostructures lab., Japan Fine Ceramics Center WPI Advanced Institute for Materials Research, Tohoku University

Polycrystals-Grain Boundary

HRTEM (ZnO Film)

Grain Boundary Character

Dopant Effect

Varistor (ZnO)

Device to protect from static electricity and mechanical shock

Dopant Effect Alumina (Al₂O₃) Structural Ceramics for IC chip substrate, Insulator, Catalyst carrier

Breakthrough in Electrom Microscopy (Cs corrected STEM)

HAADF-STEM (High Angle Annular Dark Field-STEM) (Z-Contrast Imaging)

Direct Observation of Segregated Dopant

 $I \propto Z^2$

Specification

Item	JEM-ARM200F	Note
Acc.Voltage	120,200kV	
Resolution		
TEM	1000	
Point	0.11nm	Cs Corected
Lattice	0.10nm	
Information Limit	0.10nm	
STEM		
DF-Image	0.08nm	Cs Corected
BF-Image	0.14nm	
Power Stability		
Acc.Voltage	1×10 ⁻⁶ /min	
OL Current	5×10 ⁻⁷ /min	

STEM-Theoretical Calculation-Materials Design

(1)Segregated Dopants at Ceramic Grain Boundaries
Single dopant (Al₂O₃ : Y³⁺)
Co-dopant (Al₂O₃ : Ca²⁺+Si⁴⁺)
Functional materials (ZnO: Pr)

(2)Catalyst (Au-nanoparticle on TiO₂)

(3) STEM Annular Bright Field Imaging Direct Observation of Li Ions and H (LiMn₂O₄, LiCoO₂,VH₂)

> **STEM Characterization** JEOL 2100F with Cs corrector ARM 200

STEM-Theoretical Calculation-Materials Design

(1)Segregated Dopants at Ceramic Grain Boundaries
Single dopant (Al₂O₃ : Y³⁺)
Co-dopant (Al₂O₃ : Ca²⁺+Si⁴⁺)
Functional materials (ZnO: Pr)

(2)Catalyst (Au-nanoparticle on TiO₂)

(3) STEM Annular Bright Field Imaging Direct Observation of Li Ions and H (LiMn₂O₄, LiCoO₂,VH₂)

Introduction

α -Al₂O₃ Ceramics

http://www.asuzac-ceramics.jp/material/material1.htm

High temperature structural materials

High temperature properties of α -Al₂O₃

Various types of Grain Boundaries

<u>2 nm</u>

HAADF-STEM Image of Alumina Σ **31 Grain Boundary**

The AI cation sublattice atomic structure is revealed in the STEM image, showing the presence of 7-membered ring structures.

HAADF-STEM Image of the Σ31 Y-doped Boundary

The basic grain boundary structure is relatively unaltered in comparison to the undoped case. The location of the Y ions are revealed by the STEM image

Pristine GB Ionic Bonding

Y-doped GB Covalent Bonding

Model for Creep Resistance Due to Doping

The presence of Y has been shown to increase the covalency (and strength of the cation-anion bonds) in alumina GB

HAADF-STEM images of Y doped Σ 13 grain boundary

•Intensity $\propto Z^2$

⇒Bright spot : Y columns⇒Less bright spot : Al columns

Plan-view imaging

Local disordering at the interface!

Disordering at a single atom level can be detected!

STEM plan-view imaging directly highlights individual dopant atoms in a buried interface!

STEM-Theoretical Calculation-Materials Design

(1)Segregated Dopants at Ceramic Grain Boundaries
Single dopant (Al₂O₃ : Y³⁺)
Co-dopant (Al₂O₃ : Ca²⁺+Si⁴⁺)
Functional materials (ZnO: Pr)

(2)Catalyst (Au-nanoparticle on TiO₂)

(3) STEM Annular Bright Field Imaging Direct Observation of Li Ions and H (LiMn₂O₄, LiCoO₂,VH₂)

Al_2O_3 : Ca-doped G.B.(Σ 13)

Ca atoms were not detected

[1210]

Ca(Z=20) >> Al(Z=13) >> O(Z=8)

Al₂O₃: Si-doped G.B.

Different from pristine G.B.

Si atoms were detected

 $\underline{\text{Si}(Z=14) \doteq \text{Al}(Z=13)} >> O(Z=8)$

Charge Effect

STEM-Theoretical Calculation-Materials Design

(1)Segregated Dopants at Ceramic Grain Boundaries
Single dopant (Al₂O₃ : Y³⁺)
Co-dopant (Al₂O₃ : Ca²⁺+Si⁴⁺)
Functional materials (ZnO: Pr)

(2)Catalyst (Au-nanoparticle on TiO₂)

(3) STEM Annular Bright Field Imaging Direct Observation of Li Ions and H (LiMn₂O₄, LiCoO₂,VH₂)

Varistor (ZnO)

Device to protect from static electricity and mechanical shock

I-V characteristic of ZnO bicrystals

The nonlinear I-V characteristic results from the Pr.

HAADF-STEM image of the Pr-doped ZnO GB

Z-contrast imaging

Heavier atoms (Pr: Z=59, cf. Z=30 for Zn) appear much brighter.

 \rightarrow The Pr segregates to specific atomic columns of the boundary (no interfacial layers).

Formation energy of Zn vacancy (V_{Zn}) and O interstitial (O_i)

 V_{Zn} at the site 1 and 2, O_i at 3 and 4 are calculated.

V_{Zn} is more stable than O_i. Pr-doping lowers the formation energies.

Pr promotes the formation of native defects. (particularly Vzn)

STEM+First Principle

The role of Pr can be understood by First Principles calculation

<u>PRL (2006)</u>

Factor to determine the segregation site; Pr-doped ZnO Σ7 GB

Pr segregates at the sites of the locally longest inter-atomic distance.

Bond length map (comparison with ZnO bulk)

Pr segregates to the sites of locally largest inter-atomic distance.

Pr segregates at the sites of the locally longest inter-atomic distance. PRB (2010) **STEM-Theoretical Calculation-Materials Design**

(1)Segregated Dopants at Ceramic Grain Boundaries
Single dopant (Al₂O₃ : Y³⁺)
Co-dopant (Al₂O₃ : Ca²⁺+Si⁴⁺)
Functional materials (ZnO: Pr)

(2)Catalyst (Au-nanoparticle on TiO₂)

(3) STEM Annular Bright Field Imaging Direct Observation of Li Ions and H (LiMn₂O₄, LiCoO₂,VH₂)

Nano hetero interface – Nanosized Au particles on TiO_2

STM image of Au nanoparticles onTiO₂ surface M. Valden, X. Lai and D.W. Goodman, Science (1998)

Au size effect on CO oxidation M. Haruta et al., J. Catal. (1993)

"Interfacial interaction" at nano-scale hetero interface is a key factor!

Comparison between HAADF-STEM and BF-STEM images of Au nanoparticles on TiO_2

Heavy Au particles can be clearly imaged by Z-contrast STEM !

Au single atoms on TiO_2 (110) surface

Au attached on Ti-O columns

Au single atoms attached to the specific surface sites

Au-TiO₂ crystal orientation and interface structures

Au size >3nm

Au and TiO₂ have no lattice coherency

Au size <3nm

Unique epitaxial Au structure on TiO₂ surface

Size dependent "coherent⇔incoherent" interface transition

Au-TiO₂ interface structures dramatically change according to the Au sizes!

Electronic structures of Au nanoislands on TiO₂

When Au nanoislands are very small, TiO₂ substrate drastically changes their atomic as well as electronic structures through unique interface structures!

Short Break !

Gallery (Another Example (HAADF-STEM)) How STEM is powerful to reveal the nature of materials!

Ca²⁺Ti⁴⁺doped MgO

Ce doped c-BN

Eu doped Al₂O₃ (Dislocation)

Ca²⁺+Ti³⁺ co-doped GB (MgO Σ5GB)

GB Ordered Segregation Superstructures

Nature (2011)

Single Atom Imaging in a crystal

Spatial distribution of Ce atoms in c-BN (Solid Solution)

ZB = 5, ZN = 7, ZCe = 58

- Ce distribute as "isolated" single atoms
- brightness: depth or overlap

- thickness measurement: EELS
- atom counting by local maxima
- < 20 nm, ignoring overlap

Atomic site of single Ce atoms in ADF STEM

<u>~8 pA, 200 kV BN-dumbbell: ~0.9 Å</u>

Ce occupies N-antisite (cation-anion substitution) PRL(2013)

Great Breakthrough in Materials Science!

Ca²⁺Ti⁴⁺doped MgO Complicated GB segregation

Ce doped c-BN Solid solution

Eu doped Al₂O₃ (Dislocation) Cottrel atomosphere **STEM-Theoretical Calculation-Materials Design**

(1)Segregated Dopants at Ceramic Grain Boundaries
Single dopant (Al₂O₃ : Y³⁺)
Co-dopant (Al₂O₃ : Ca²⁺+Si⁴⁺)
Functional materials (ZnO: Pr)

(2)Catalyst (Au-nanoparticle on TiO₂)

(3) STEM Annular Bright Field Imaging Direct Observation of Li Ions and H (LiMn₂O₄, LiCoO₂,VH₂)

New Approach

Visualization of Light Elements (Direct Observation)

STEM: Annular Bright Field (ABF)

Univ. Tokyo, JFCC, JEOL

Findlay et al, APL (2009) Okunishi et al, M&M (2009)

JEM ARM-200F, 200 keV, $\alpha = 22$ mrad HAADF: 90–170 mrad, BF: 11–22 mrad

Annular bright field (ABF) detector

- ABF imaging shows light and heavy columns simultaneously.
- Seems to be robust over wide thickness range.

Defocus-thickness map simulations: SrTiO₃ [011]

STEM images of β -Si₃N₄ [0001]

HAADF

ABF

4H-SiC [1120] projection

ABF STEM image

STEM Images of LaFeAsO_x

HAADF

ABF

Direct observation of Li in LiMn₂O₄ spinel by ABF technique in STEM

 $[110]_{LiMn_2O_4}$

Angewandte Chemie (2011)

Direct observation of Li in LiCoO₂ by ABF technique in STEM

ABF: α =25 mrad β = 8-25 mrad

APL(2010)

[1120]_{LiCoO2}

LiCoO₂: S.G. : R-3m (166) a = b = 2.84 Å, c = 13.95 Å

Li can be clearly seen in this image

ABF-STEM Images

$(\alpha = 25 \text{ mrad}, \beta = 8-26 \text{ mrad})$

YH₂

High Resolution STEM + Quantitative Analysis

- Cs-corrected STEM (<1 Å)
- Theoretical Calculation (First Principles, Lattice Static, MO etc.)

•Segregated Dopants at Ceramic Grain Boundaries, Three Dimensional Observations, Single atom imaging $(Al_2O_3 : Y^{3+})$ Super structure, Charge neutrality $(Al_2O_3 : Ca^{2+}+Si^{4+})$ Site of locally largest inter-atomic distance (ZnO:Pr)

•Catalyst (Au-nanoparticle on TiO₂), TiO₂ Surface Small particles- Coherent interface

•STEM Annular Bright Field Imaging Direct Observation of Li Ions and H (LiMn₂O₄, LiCoO₂, VH₂)

Thank you for your attention!

JFCC(Nagoya)

WPI, Tohoku Univ. (Sendai)

Thank you very much!