Лекция 2. Нанобиотехнология возбудимой клетки

Во второй лекции будут представлены исследования, связанные с генерацией возбуждения в нервной клетке, обусловленные изменением мембранного потенциала, активацией ионных каналов, переносчиков и насосов. Особое внимание будет уделено мембранной теории возбуждения нервной клетки, связанной с изменением вязкости липидов и конформации белков в различных отделах миелинового нервного волокна. Будут представлены примеры новой концепции формирования возбуждения нервной системы – регуляция возбудимости с помощью рецепторов, локализованных в клетках глиии и Шванновских клетках.

Церебральный ганглий и нервы пиявки

Вызванная (А) и спонтанная (Б) активность нейрона (vcp) при при электростимуляции нейрона (lcp)

Изменение амплитуды ПД и мембраносвязаного Са²⁺ аксона при термостимуляции

Изменения мембранного потенциала, поверхностного заряда (мембраносвязанный Ca²⁺) и потенциала внутренней мембраны митохондрии нейрона при стимуляции

Для всех графиков по оси Ox - время, мин

Изменения состояния нейрона при химической (А) и механической (В) стимуляции

Содержание мембраносвязанного Са²⁺

Стрелки отражают момент стимуляции

Конфокальная лазерная сканирующая микроскопия нервной клетки

Распределение митохондрий в нейронах в составе нервного ганглия пиявки *H.medicinalis* Распределение митохондрий в миелиновом нервном волокне лягушки *R.temporaria*

Распределение внутриклеточного Ca²⁺ (A) и потенциала внутренней мембраны митохондрии (B) вдоль нейрона (Rz) при действии глютамата

Действие NO на распределение потенциала внутренней митохондриальной мембраны в клетке

А. Контроль

Б. 2 мин спермин/NO

В. 7 мин спермин/NO

Мембранный потенциал и потенциал действия

Мембранный потенциал нервной клетки А.Пассивный (электротонический): 1.Характеристика мембраны: V=IR(1-e^{-t/RC}); 2. кабельные свойства мембраны: $V(x) = V_0 e^{-x/\lambda}$ Б. Активный І.Локальный потенциал 2.Рецепторный потенциал; З.Постсинаптический потенциал (ВПСП, ИПСП)) 4.Потенциал действия; 5.Следовая гиперполяризаця 6.Следовая деполяризация Excitatory Synapse (Glutamate) Voltage Clamp Current Clamp Currents NG IK A. IM IS IAHP Naleak apacitone GABAA GABAs

GABA)

Ионные токи и воротный механизм канала

Модель межклеточных взаимодействия

$$W\frac{d[K]_{W}}{dt} = (I_{KR} + I_{KG})/F - J_{\text{pump}} + \gamma_{W}([K]_{0} - [K]_{W}),$$

[*K*]_{*w*}) - диффузия иона между компартментами экстраклеточной среды; *W*

Мембранный транспорт ионов

20% генома человека кодирует ионные траспортеры плазматической мемраны клеток

Ионный канал

 Ионный канал - это интегральный белок, образующий в мембране регулируемую пору для обмена клетки с окружающей средой ионами К⁺, Na⁺, H⁺, Ca²⁺, Cl⁻, а также водой Ионный канал - это интегральный белок, образующий в мембране регулируемую пору для обмена клетки с окружающей средой ионами K⁺, Na⁺, H⁺, Ca²⁺, Cl⁻, а также водой

Сравнение методов регистрации с помощью ооычного микроэлектрода (А) и с помощью *patch- nunemкu* (Б)

Функции ионных каналов

- *Потенциал-управляемые каналы* (потенциал-чувствительные, потенциал-зависимые, потенциал-активируемые, voltage-gated).
- Потенциал-зависимые натриевые каналы активируются под мембраны, действием сдвига электрического потенциала превышающего критический уровень деполяризации. Именно такого типа потенциал-управляемые натриевые и калиевые генерацию обеспечивают нервного каналы импульса (тетродотоксин-чувствительные натриевые каналы, Kdr-каналы потенциал-активируемые К-каналы. калиевые задержанного выпрямления, кальциевые каналы пресинаптических окончаний аксонов).

Структура и блокаторы потенциалозависимого ионного канала

тетродотоксин (TTX) , сакситоксин (STX), токсин морской анемоны (ATX), батрахотоксин (BTX), токсин скорпиона (ScTX), тетраэтиламмоний (TЭA), 4-аминопиридин (4-АП)

А - порообразующая α-субъединица. Основные структуры α-субъединицы показаны как трансмембранные цилиндры, представляющие собой αспиральные сегменты. Жирные линии демонстрируют цепи полипептида каждой субъдиницы с длиной, приблизительно пропорциональной числу остатков аминокислот. α-Субъединица состоит из четырех доменов (DI-DIV), каждый из которых состоит из шести сегментов (S1-S6). Сегмент S4 предполагаемый сенсор напряжения.

Б - полная структура канала, включающая α-субъединицу и β₁-, β₂субъединицы. Внеклеточные участки β₁-, β₂-субъединиц показаны как складки. Ψ - участки вероятного гликозилирования; Р - места фосфорилирования протеинкиназой А (круги) и протеинкиназой С (ромбы); h - инактивационная частица в петле инактивационных ворот.
В - подобие последовательности аминокислот и филогенетические взаимоотношения α-субъединиц потенциалуправляемых Na⁺-каналов. Показано сравнение аминокислотной идентичности для Na⁺-каналов Na_v1.1-

Na_v1.9. Даны номер гена и номер хромосомы у человека

Потенциалозависимый Na⁺-канал

А - канал представляет собой трансмембранную макромолекулу с порой, проходящей насквозь через ее центр. Функциональные области ионного канала - селективный фильтр, ворота и сенсор напряжения - обнаружены в ходе электрофизиологических экспериментов.

Б - модель работы потенциалуправляемого Na⁺-канала, имеющего активационные (или m-ворота) и инактивационные (или h-ворота). В состоянии покоя канал закрыт вследствие закрытия активационных ворот. Смещение мембранного потенциала в положительную область (до порогового значения) вызывает открытие активационных ворот. При достижении максимального для конкретной клетки потенциала канал инактивируется, т.е. происходит закрытие инактивационных ворот

Атлас по физиологии. Том 1: учеб. пособие / А. Г. Камкин, И. С. Киселева - 2010. - 408 с. : ил

Блокаторы натриевого канала

А - химическая структура блокаторов поры Na⁺-каналов - тетродотоксина и сакситоксина.

Б - типичное блокирующее действие тетродотоксина на Na⁺ток. Суммарный ток, включающий входящий Na⁺-ток и выходящий ток, возникающий при разных ступенях деполяризации относительно поддерживаемого потенциала (Б1). Полное ингибирование входящего Na⁺-тока тетродотоксином в концентрации 300 нМ (Б2). Аритмия, анестезия, синдром Лиддла и т.д.

Место связывания	Токсин	Домены и сегменты	Физиологический эффект
Место связывания 1	Тетродотоксин (tetrodotoxin) Сакситоксин (saxitoxin) µ-Конотоксин (p-conotoxin)	IS2-S6, IIS2-S6, IIIS2-S6, IVS2-S6	Блок ионного канала => ингибирование ионного транспорта
Место связывания 2	Вератридин (veratridine) Батрахотоксин (batrachotoxin) Граянотоксин (grayanotoxin) Аконитин (aconitine)	IS6, IVS6	Постоянная активация
Место связывания 3	α-Токсины скорпиона (α- scorpion toxins), Токсины морских анемон (sea anemone toxins), δ-Atracotoxins	IS5-IS6, IVS3-S4, IVS5-S6	Медленная ипактивация; усиление постоянной активации
Место связывания 4	β-токсины скорпиона (β-scorpion toxins)	IIS1-S2, IIS3-S4	Временная повторяющаяся проходящая активность и блок ⇒ смещение потенциал-зависимой активации в более негативные потенциалы
Место связывания 5	Бреветоксин (brevetoxins) Цигауатоксин (ciguatoxins)	IS6, IVS5	Повторяющаяся активность; постоянная активация => смещение потенциал-зависимой активации в более негативные потенциалы
Место связывания 6 ?	δ-конотоксин (δ-Conotoxin), Пиретроиды (Pyrethroids), ДДТ (DDT)	Не установлены	Повторяющаяся активность и/или блок; замедление активация, инактивация и деактивация
Место связывания для местных анестетиков	Местные анестетики, Антиаритмические препараты, Анттиэпилептические препараты, DPI 201-106	IS6, IIIS6, IVS6	Продление потенциала действия. Блок ионного канала

Механизмы ионной селективности и проведения ионов К⁺ через К⁺⁻канал

Дегидратация К⁺ за 10 нс!

А - схема гидратированных и дегидратированных ионов Na⁺ и K⁺ в растворе и в поре K⁺-канала.

Б - схема электронной плотности, полученная с высоким разрешением методом рентгеновской кристаллографии, демонстрирует ионы К⁺, проходящие через селективный фильтр.

В - интерпретация карты электронной плотности, демонстрирующая два альтернативных состояния, при которых ионы К⁺ двигаются через канал

А

Движение иона в канале

10⁸ ионов К за 1 секунду; центральная полость – 10 А

Распределение ионных каналов и проведение ПД

		Conc	uctance pS]	D	nsity	Deactivation	Activation	Inactivation		Blocker# IC30 [M]		
Chan	nel type	Ri	High-K,	Paranodal	Nodal	t [ms]	E30 [mV]	τ [ms]	TEA	Other	Function ^b	References
Na	Toad Rat Human	7-11 9-13 13			1000 /μm²		- 37	2-44		4n TTX 8 μ Bup LA	AP rising phase	1, 8, 10
K _t	Toad Rat Human	8 11	23 33 34	++++ 30/µm² +++	++++ 5/µm² ++	10-200 (-120 to -70 mV)	– 75 (KCl) – 58 (Ri)	10 s (-40 mV) 24 s (+40 mV)	0.6 m	7 n DTX, 4AP MCDP, Ba, Cs, Phlor, CTX	AP repolarization 2nd phase (cf. component f ₁)	1, 4, 68, 11
K,	Toad Rat Human	19	30 55	+++ 12jum² ++	+ 2/μm² +	5	ľ .	140′	1 m	4-AP: (K _F & K ₁ similar) 10-100 µ(-60 mV) 3-10 m (+40 mV)	AP repolarization 1st phase; (cf. component f ₂)	1, 6-8, 11
K,	Toad Rat Human		7 10 7-9	+ - +	+ 110/µm² +	130'	-76'	>10 s	3-9 m	No Cs	Neuromodulation, resting potential	1, 8, 11
K52	Human		18	+		>100	>-100					8
K _G	Toad Rat Human	75	132 249 200	++		<5 (-90 mV)	Ca, >10-9M E > - 50 100 μM Phlor	No	0.2 m	No CTX	AP repolarization, neuromodulation?	2, 4, 8, 11
Katp	Toad Rat		44 63	+				Run-down	4.2 m	35 μ ATP, Glib, Ba, no 4-AP	Links metab. to excitability, protection of MP	2, 5, 11
K,s	Toad	34	90		++		K _D = 33 mM Na; (a = 2.9)	No	21 m	Ba, Cs	Posttetanic hyper- polarization	9
K _{ilder}	Toad	19	49	+++	Thin > dick liber	No	No	No	23 m	160 n Bup, Cs, Ba, Zn, LA	Resting potential in thin fibers?	3, 10
Cl	Toad	28 (-80 100 (+40	nV) mV)		++	Sow	- 80 to +20		No	Zn, ATP, Mg	Stabilizer of resting potential	5

24 C y 1 and v Cortespont to tata and symmetry manness. Abbreviations: AP, action potential; 4-AP, 4 animopyridine; Buy, bupvexuine; CTX, charyldocoxin; DTX, dendcoxoin; Ghb, glibenclamide; LA, local aneshteris; AD, mast cell alegnating peptide; MP, membrane potential; Philor, philoretia; TTX, tetrodocoxin. References: 1, Junaš et al. (1989); 2, Jonas et al. (1991); 3, Koh et al. (1992); 4, Kah et al. (1993); 5, Koh (unpublished); 6, Dubois (1981); 7, Brin et al. (1990); 8, Sabale et al. (1993); 9, Koh et al. (1994); 10, Nau et al. (1993); 11, Safronov et al. (1993).

A - γ-субъединица изображена как
трансмембранный белок с четырьмя
сегментами с внутриклеточным N- и Cконцами. Первая половина γ-субъединицы
взаимодействует с α₁-субъединицей. Первая
внеклеточная петля содержит заряженные
остатки и участки гликозилирования.
Определены взаимодействующие участки
α₂δ- и β-субъединица (β-взаимодействующий
домен) с α₁-субъединицей.
Б - модель потенциалуправляемого Ca⁺анала. Показана основная α₁-субъединица,

анала. Показана основная α₁-субъединица, формирующая пору и дополнительные α₂-, δ-, γ- и β-субъединицы

Са²⁺-канал

Сродство к Са ²⁺ – 10 -6 М; скорость транспорта 10 ⁶ в секунду; Са ²⁺ - антагонисты при гипертонии

комплекс белков, образованный из α_1 -субъединицы и вспомогательных α_2 б-, β - и ү-субъединиц.

Субъединица αı формирует проводящую пору, она содержит сенсор напряжения и аппарат ворот канала. Петля между трансмембранными сегментами S5 и S6 в каждом домене определяет селективность И проводимость ионного канала. Селективный фильтр Са²⁺-канала тестирует Ca²⁺ на входе в канал.

Эти события достаточно редки по сравнению с входами ионов Na⁺, количество которых во внеклеточной среде примерно в 100 раз больше. Хотя ионы Ca²⁺ и Na⁺ имеют идентичный диаметр (2 Ao), канал может выбирать Ca²⁺ в большей степени, чем Na⁺, в соотношении 1000:1.

Пора содержит специфическое место, образованное 4 Р-петлями. Каждая содержит глутаминовый остаток. Атомы кислорода не от карбонильных, а карбоксильных групп аминокислот.

Молекулярная организация канала для воды - аквапорина.

Жажда, концентрирование мочи, регуляция температуры, выделение пота и слез,катаракта)

А - структура одной субъединицы аквапорина в мембране. Б - структурная модель белка-тетрамера. В - вид поры сбоку

гомотерамер, транспорт молекул воды за счет градиента; каждая субъединица образует пору; перенос З 10⁶ молекул воды в секунду; селективность поры - ограничение размера (в узком месте З А; электростатическое отталкивание (положительный аргинин); ориентация диполей воды

Лиганд-управляемый канал

- А. специфичность
- 1. насыщение канала при физиологических концентрациях медиатора
- 2. локализация канала в клетках ткани ,в которой наблюдается его биологическое действие
- 3. селективность лиганд специфичен для данного сайта канала
- Б. функции канала
- 1. узнавание линганда
- 2. инациация первой стадии клеточного ответа
- (активация канала; «вторичны й мессенжер»)
- В. Действие медиатора
 - R + L = RL = Q (биологический эффект)
- Теория занятости клеточный ответ зависит от концентрации связанных рецепторов (аналогична М-М)
- $K_m = K_d = [R][L]/[RL] Q/Q_{max} = [RL]/[R] Q = Q_{max}[L]/K_d+[L]$
- Гипотеза « плавающего рецептора»

Активируются при связывании с рецепторным участком канала специфического лиганда Локализованы в химических синапсах и трансформируют химический сигнал, высвобождающихся нейромедиаторов, в электрический локальный потенциал. Примеры: каналы с никотиновыми ацетилхолиновыми рецепторами *nAChR*), серотониновыми рецепторами (5-НТЗ), глициновыми, ГАМКрецепторами (GABAA и GABAC).

Ацетилхолиновый канал - рецептор

Структура n-холинорецептора и токов АХ-ионные каналы

А - ток через одиночный ионный канал n-холинорецептора, экспрессированного в ооцит ксенопуса (1) и мембрану эмбриональных и зрелых мышечных клеток (2).Б - входящий К+-ток через К+-канал, активируемый АЦХ (регистрация в конфигурации *cell-attached*

Активация ацетилхолинового рецептора - ионотропного одиночного ионного канала в нервномышечном синапсе

Межклеточные контакты и структура щелевого контакта.

А - типы межклеточных контактов. Б - модель структуры щелевого контакта, включающая липидный бислой двух соседних клеток, содержащий коннексоны, каждый из которых построен из шести коннексинов. В - в увеличенном виде представлено открытое и закрытое состояние канала коннексона

Модель работы белка-переносчика

Белок-переносчик может существовать в двух конформационных состояниях: в состоянии «понг» участки связывания для А открыты с наружной стороны бислоя; в состоянии «пинг» те же участки оказываются открытыми с другой стороны. Переход между двумя состояниями осуществляется случайным образом и полностью обратим. Поэтому при более высокой концентрации А с наружной стороны бислоя с белком-переносчиком будет связываться большее число молекул А в состоянии «понг», что приведет к транспорту вещества А по градиенту его концентрации.

Структура и функция Cl-зависимых переносчиков (CCCs)

Na/Ca –переносчик (NC(K)X) и Ca²⁺-ATPaзa (PMCA) плазматической мембраны

Са-АТФ-аза плазматической мембраны регулируется калмодулином (CaM)

Натриевый насос - Na/ К-АТРаза

Na+,K+-АТРаза и оуабаин

Протонная помпа - Н⁺-АТФаза в клетках

Физико-химические изменения в аксоне при потенциале действия

Физико-химические свойства мембраны в различные фазы ПД

Физический процесс	Фаза потенциала действия	Возможные изменения мембраны
Положительная теплопродукция, 10- 12 мккал/г за 25 мсек.	деполяризация	Уменьшение энтропии и увеличение упорядоченности компонентов мембраны
Усиление рассеяния света (под углом 90 °) за мкс	деполяризация	Увеличение вязкости липидов
Уменьшение рассеяния света (под углом 10-25 °) за 25 мс	деполяризация	Увеличение гидратированности мембранных белков
Ослабление интенсивности поляризованного света за 40 мс (увеличение n _o -n _{но})	деполяризация	Увеличение толщины или ориентированности белков мембраны
Увеличение интенсивности поляризованного света за 2 мс (снижение n _o -n _{но})	гиперполяризация	Дислокация белков в мембране
Перераспределение зарядов в мембране(воротный ток),0,13 пкА/ мк ²	Изменение проводимости мембраны	Конформационные изменения: перемещения фиксированных заряженных групп

Физико-химические свойства аксолеммы Анализ спектров комбинационного рассеяния белков и липидов

Строение миелинового нервного волокна

Морфология и структуры нервной клетки

Fig. 1. A formalized diagram showing the principal structural features of an incisur in a mature sciatic nerve fibre of the mouse in the moderately open condition. The various elements shown are described throughout the text.

Структура миелина

рентгеноструктурный анализ нервного волокна в области насечек миелина

схема миелинового нервного волокна, компактный и некомпактный миелин

Организация миелина в нервном волокне

Перехват Ранвье (слева); Миелин (справа)

Спектроскопия комбинационного рассеяния миелинового нервного волокна

Область 2800-2950 см⁻¹ спектра КР нервного волокна характерна для жирных кислот

Спектроскопия комбинационного рассеяния миелинового нервного волокна

0

5

10

15

Distance, μm

20

25

30

Fig. 2 (a) Typical Raman spectra of nerve fiber myelin with assignments of bands used for calculations. (b) Comparison of intensity ratios between F-type and D-type regions of myelin. (c) The interpretation of the differences in Raman spectra. Values were compared using Student *t* test, * and ** denote statistics p < 0.05 and p < 0.001, respectively.

Использование флуоресцентных зондов хлортетрациклин и Fluo-3AM для исследования перераспределения Ca²⁺ в нервном волокне

Лазерная интерференционная микроскопия (ЛИМ) миелинового нервного волокна

10 µm

Лизолецитин и метил-β-циклодекстрин

Лизолецитин – лизофосфолипид, который встраивается в плазматические мембраны, действует как детергент, вызывая солюбилизацию мембранных белков и липидов.

Метил-β-циклодекстрин – циклический олигосахарид способствует экстракции холестерола из мембран. По данным некоторых исследователей разрушает липидные рафты в мембране клетки.

ЭКСТРАКЦИЯ ХОЛЕСТЕРИНА Связанная вода. Изменение времени спин-спиновой релаксации Т₂ воды в структурах миелина нерва при действии проназы, тиолового реагента (пХМБ) и блокатора К-канала (ТЭА)

Заключение

- 1. Состояние мембран изменяется в процессе возбуждения в миелине и перехвате Ранвье различным образом
- 2. Понижение уровня холестерина в миелине при возбуждении приводит к нарушению процессов изменения упорядоченности липидов не только в миелине, но и перехвате Ранвье
- Гидролиз пептидных экстраклеточных участков белков (периаксональное пространство) меняет морфологию, увеличивает вязкость миелина и снижает долю связанной воды (в интернодальной области)