Наноматериалы в электрохимических накопителях энергии

* Gartner's hype cycle

ПУМИХА

Supercapacitors

Stern layer

WIREs Energy Environ 2013. doi: 10.1002/wene.102

carbon source

			Reported			
	Activation	BET-SSA	Capacitance			
Precursor	Method	$(m^2 g^{-1})$	(F g ⁻¹)/Cell Type		Electrolyte	Ref
_	Physical-H ₂ O	2240	240/2 symm	Organic electrolyte	1.2 M TEABF ₄ in acetonitrile (AN)	50
_	Physical-CO ₂	1050	52/2 symm		1M TEABF ₄ in polycarbonate (PC)	51
Melamine mica	30% HNO ₃ then ammonia treatment	3487	148/2 symm		$1M TEABF_4$ in PC	65
Wood sawdust	Chemical-KOH	2967	236/2 symm		1M TEABF ₄ in AN	27
Pitch CF	Chemical-KOH	770	46/2 symm		TEABF ₄ in PC	66
Poly(vinylidene chloride) (PVDC)	Chemical-KOH	2050	38/2 symm		$1M TEABF_4$ in PC	54
_	Chemical-KOH	2500	110/2 symm		1M TEABF ₄ in AN	64
Polyvinyl alcohol	Chemical-KOH	2218	115/2 symm		1M Et ₃ MeNBF ₄ in PC	49
Polyvinyl alcohol	Chemical-KOH	2218	147/2 symm		1M LiPF ₆ in EC-DEC	49
Phenol formaldehyde resin	Chemical-KOH/ZnCl ₂	2387	142/2 symm		1M Et ₃ MeNBF ₄ in PC	67
Polybenzimidazol	Chemical-N ₂	1220	23/2 symm		0.8M TEABF ₄ in PC	68
Lignocellulosic materials	—	2300	95/2 symm		1.5 M TEABF ₄ in AN	61
Lignocellulosic materials	_	2315	125/2 symm		1.7M N(C ₂ H ₅) ₄ CH ₃ SO ₃ in AN	62
Polyacrylonitrile (PAN)	_	1340	66/2 symm		1 M LiPF ₆ in EC-DEC	69
PAN	_	1340	90/2 symm		1 M TEABF ₄ in PC	70
Coconut shell	_	1692	22/2 symm		1 M LiClO ₄ in PC	71
Pitch CF	_	1000	21/2 symm		1 M LiClO ₄ in PC	71
Pitch CF	_	1500	24/2 symm		1 M LiClO ₄ in PC	71
Phenol resin	_	1232	3/2 symm		1 M LiClO ₄ in PC	71
Phenol resin	—	1542	18/2 symm		1 M LiClO ₄ in PC	71
Pitch	_	1016	1/2 symm		1 M LiClO ₄ in PC	71
Pitch	_	1026	2/2 symm		1 M LiClO ₄ in PC	71
Sulfonated poly(divinylbenzene)	physical-CO ₂	2420	206/3	Aqueous electrolyte	$2M H_2SO_4$ aq. sol.	47
Rubber wood sawdust	physical-CO ₂	913	138/2 symm		$1M H_2SO_4$ aq. sol.	72
Poly (amide imide)	Physical-CO ₂	1360	196/3		6M KOH aq. sol.	73
Pitch fiber	Physical-H ₂ O	880	28/2 symm		1M KCl aq. sol.	74
Coconut shell	Chemical-Melamine and urea	804	230/2 symm		$1M H_2SO_4$ aq. sol.	75
Melamine mica	Chemical-30% HNO ₃ then ammonia treatment	86	115/2 symm		$1M H_2SO_4$ aq. sol.	65
Phenolic resin	Chemical- 2M HNO ₃	_	60/2 symm		6M KOH aq. sol.	76
graphite	Chemical- HNO ₃ /H ₂ SO ₄ (1:1)		1071/3		0.1M KOH aq. sol.	59
Rice husk	Chemical- H ₂ SO ₄	_	175/3		6M KOH aq. sol.	40
Wood sawdust	Chemical-KOH	2967	143/2 symm		6M KOH aq. sol.	27
Eggshell	Chemical-KOH	221	297/3		6M KOH aq. sol.	41
polystyrene	Chemical-KOH	2350	258/3		6M KOH aq. sol.	77

Charge/discharge of supercapacitors

Lithium battery

C-rate

1С - разряд/заряд за 1 час 2С – полчаса C/2 – 2 часа

Electronic structure of a solid body

reduction

oxidation

Концентрационная поляризация

ДИФФУЗИЯ

ЭЛЕКТРОМИГРАЦИЯ

закон Фика

уравнение Эйнштейна-Смолуховского

$$J_{d,j} = D_j \text{ grad } c_j$$

Концентрационные профили

Activation + concentration polarisation

Carbon coatings

SEI formation

Наноматериалы в ЛИА: за и против

Скорость интеркаляции/экстракции лития: $\tau = L^2 / D$

Обратимые электродные реакции, которые невозможны в объемных материалах

Высокая удельная площадь поверхности, большая площадь контакта с электролитом, высокий ионный поток

Изменение равновесных потенциалов

Эффективность производства и цена

Проблемы организации хорошего контакта между частицами

Высокая реакционная способность приводит к сторонним реакциям

Малая плотность нанопорошков, уменьшение объемной плотности энергии